

Git and Gitflow tutorial

This page is only the README landing page for the repository, head over to

https://git-flow-tutorial.readthedocs.io/en/latest/ for the tutorial itself

Welcome ! This repository contains a tutorial to learn how to use Git and Git flow to collaborate on code with others. Should you be a total newbie to git, you’ll find (almost) everything you need to learn the basics and become autonomous on a small project. You may already be familiar with most git commands, but are not satisfied with the way you use it, because you do not really know how to collaborate effectively, what are the best practices, or you feel that you’re not making the most of the branching system.

In both cases, this tutorial will help you see Git as a helpful coding partner, rather than that painful bash-thing that your team and teachers make you use without really explaining to you its principles, power and versatility. This is not a Learn Git in five minutes tutorial, rather something in between a single page tutorial and a small book.

What you will find here

If you’re totally new to Git, read the general introduction [https://git-flow-tutorial.readthedocs.io/en/latest/introduction.html] ! It is sure rather long, but it explains you what Git is without any technical considerations, so that you can start the tutorial with an already clearer idea of the big picture. I remember the first time I was presented with Git : everyone was talking about do you commits, use branches, Git is super powerful … Since no one really knew what it was for and how to use it the right way, it soon became an evil tool that was only repeatedly breaking my code with awful <<<<<<< HEAD lines, and that’s it !

So take the time to understand Git without having to think about any terminal window, it will save you tons of time and energy wasted speaking a language that you know the words but don’t understand yet.

Contents

The first section is all about the basic commands that you would learn during your first encoutering with Git in any other tutorial. It is crucial since they are the ones that you’ll use tons of time and that should become reflexes. If you’ve already been using Git for at least one or two months, you can go fast on that one, cherry-pick the
subsections that are new to you, or go straight into the second section, about branching models and collaborating.

From then on, rather than giving you an unordered list of things you need to know, the tutorial is built so as to reproduce the usual steps of code development in a team, to accompany you from the writer’s block to succesful collaboration and conflicts resolution with your team.

Do code while reading

You can obviously read that tutorial without coding, but you’re likely to forget almost everything when you’re done. Feel free to use a personal repository to apply stuff you’ll read here, or to clone the repository [https://gitlab.com/roamdam/git-flow-tuto] associated with these tutorial to have at hand an exemple of a repository following (most of the time) the ideas and principles you’ll hear about here.

There’s a little python script in it that makes a good material to train on. You can download and install python here [https://www.python.org/downloads/]. Do not fear to break things : this repository is protected from anyone but me trying to modify existing things. So please play with the instructions and do break things, for it is the best way to learn, and you’ll always be able to delete everything and clone the tutorial again, or simply go back to before you broke something (that’s precisely the thing about Git). If you don’t know python, just use any type of text file you want to use as food for git.

Contributing

I welcome suggestions through merge requests ! You’ll see that the little code used to give examples in the tutorial uses pyux [https://pypi.org/project/pyux-track/] package, which I did too because I love that kind of little but helpful packages. Feel free to check it out. Comments and merge requests are welcome here too.

About me

I’m a data scientist, not a real developer, and not a pro git user at all. But I like git, and I like to explain things, so here it is. I think not being a pro on the matter is a good thing to the purpose of this tutorial : make someone new to git and a little bit lost able to use it in a proper yet simple way. I’ll try to keep the explanations user-oriented and not too technical, which you probably don’t need.

Tutorial

	A non-technical presentation of Git
	Your code’s diary

	Tools, knowledge and rules

	Combine Git bash with a cool Git client

	Your first steps with Git (part I)
	Fundamentals : the commit

	Time travel : an introduction

	Your first steps with Git (part II)
	From commits to branches

	Merging branches and first collaborations

	Gitflow branching model

	Collaborating with git
	Commit messages conventions

Commands summary

	Basic Git commands

	Branches basics

A non-technical presentation of Git

Your code’s diary

Strictly speaking, Git is a distributed version control system (DVCS), which means, a set of tools organised for a clear purpose : give you control over the state your code is at, past and present. That’s for VCS. We’re not interested for now in the distribution part, you can read some details about it here [https://opensource.com/article/17/12/fork-clone-difference] !

You can think of Git as a high-end collective diary for your code. It enables you to save and comment on your progression at any time, in a very detailed way if you want to, or in a bulky way if that’s your preference. Just as you would read past pages of your diary to remember how you felt about those holidays last summer, you can tell Git to bring back an old version of your code, in case your recent work has broken something, for instance, and start over from there.

You can use it to work on ideas, sketch things, and decide later if you want to integrate those ideas to your code and how. You can even truly experiment on crazy ideas without affecting the existing, note things about it, decide if it is worth adding to the existing, show it to people to hear their opinion about it, maybe change some things here and there… The fun part comes with the collective in it. When you work alone, it is not that hard to know what has happened and what is happening. As soon as you collaborate with others on the same repository, knowing how to use this diary becomes harder yet critical.

Tools, knowledge and rules

Writing a diary requires several things : the diary itself, one or more pens. It also requires that you know how to write, so you and others can read and understand your work. When you get comfortable with writing, you start to use more advanced tools : different colors and stylings, bookmarks, etc. Lastly, you implicitely or explicit set some rules : a title starts on the top, write today’s date on the top-right corner, do not use more than one page for a single day, etc.

This tutorial will guide through the exact same things applied to using Git to collaborate on code. If you are new to it, you first need to get acquainted with the basic tools (I’ll say commands from now on) that everything will be built upon. This you’ll learn in the following section Your first steps with Git (part I) and Your first steps with Git (part II).

At this point, you’ll be ready to learn how to collaborate with others on a repository. Collaborating – except if you’re looking for chaos – requires that you settle on a shared set of rules, meant to be abide by everyone. Those rules are often ideals, that are difficult to follow every time you code. Just remember that they often come from people that have already handled the exact same problems as the ones you’ll face one day, and that those rules intend to ease them. So trust them ! We’ll present in section Gitflow branching model, a workflow that is not the simplest but has proved to work in many situations : git flow.

Once you know the basics and the theory of collaboration with git flow, you’ll be presented with other Git tools that tremendously help with maintaining a clean and usable history of your code. Those tools need some more attention, since they can erase things and change history : you don’t really want to mess up with time ! But with Git, actually you can – sometimes. More on that in Collaborating with git section.

Combine Git bash with a cool Git client

To use Git, you enter commands that do stuff : save, comment, go back in time, merge different versions of your code, etc. The first way to do that – the one you should start with, is using Git bash or a terminal window (if you’re working on Linux or MacOS). Writing instructions is easy there, but it is far less convenient to explore and visualise the history and changes within your code.

To do so, you can use a graphical user interface (GUI), also referred to as Git clients. These are softwares that allow you not only to visualise and explore the git tree, but also to run most of the git commands without having to type them in a terminal window. You’ll often read that it is best to learn how to use git bash before using a GUI, because otherwise you may end up dependant of your GUI : it prevents you from truly knowing how to talk to git or how to handle difficult cases that the GUI is not built for.

GUI are of no help when it comes to using virtual machines : since, in most cases, you communicate with them from a terminal window, you need to know raw git commands. I thus totally agree with the idea that you should do the whole tutorial from Git bash or a terminal window. However, I also strongly recommand that, in the meantime, you download a GUI of your choice, only to visualise what the commands do and the state of the git history. A git tree can easily be messy and intricate, and Git built-in visualisation commands are not friendly for complex cases.

None of the exercices below require a GUI, but having it along the way will undoubtedly help you with knowing what you’re doing and remembering what are the various commands for. A widely use git client is sourcetree [https://www.sourcetreeapp.com/]. I personnaly use GitKraken [https://www.gitkraken.com/], without any strong reason to except that it has a cool name and a dark theme. Both of them are free (at least for open source packages with GitKraken). All screenshots that you’ll see here are taken from this repository’s tree, visualised with GitKraken. You can find a list of GUI on Git official website [https://git-scm.com/downloads/guis].

Your first steps with Git (part I)

Encountering Git is not an easy task : as any powerful tool, it requires some
practice before rendering your coding life easier than it already was. Before
helping with collaboration with others, it is first and foremost meant to
control and navigate the history of your code. That makes it something you
also want tonuse on your own, because it helps with keeping track of what you’ve
done before (and you will forget it), experimenting on things without risking
any bugs thanks to the branching system, and, if you’re that serious, even
reviewing your own code !

There are a lot of commands, but the vast majority of your usage will revolve
around less than a dozen ones. They are the building blocks of everything else,
so take the time to know them well, because they will appear everywhere in the
more advanced sections. Do not force you to remember them : first, you can use
the recap of all the commands mentionned in the
Basic Git commands page, and also you’ll use them so often that soon
you won’t have to think about them anymore.

We don’t cover installing git on your machine here : there are plenty of
ressources online that can help you with that, starting with the
git website itself [https://git-scm.com/downloads]. Once git is installed on your computer, find a repository
of codes that you can work on freely. If any, you can clone the repository
you’re now reading from. Open up a terminal window and go to the folder you want
to clone the repository into (Pandoc has great instructions [https://pandoc.org/getting-started.html#step-2-open-a-terminal] to do that
from a terminal if that too is new to you), then type

git clone git@gitlab.com:roamdam/git-flow-tuto.git

This will download a folder with name git-flow-tuto, and if you go into that
directory with cd git-flow-tuto, you’re likely to see a (master) next to
the path your terminal window is at. We’ll dive into the master things later
on, for now it is just the sign that the folder you’re in is indeed a git
repository. If you want to use your own folder, which may already exists, simply
go to that folder from the terminal and type git init. This will initiate a
git repository. You’re good to go !

[image: _images/1-1-clone.png]
If you haven’t done it yet, I suggest again that you install a GUI to help you
visualise what’s happening ! Here are again the links for GitKraken [https://www.gitkraken.com/] or
Sourcetree [https://www.sourcetreeapp.com/]

Fundamentals : the commit

What happens when you write to your manager, your team or your teacher to tell
them what you’ve worked on today ? First you may make a list of what you did,
to recap the changes. Then you may write the body of a mail
describing, in a more or less detailed way, what you did. Finally, you may
send the mail. In git, the commit is precisely that mail. Here is the definition from
the Git glossary [https://git-scm.com/docs/gitglossary]

A single point in the Git history; the entire history of a project is
represented as a set of interrelated commits

In other words, a commit is a bundle of selected changes in your files, with a
message describing what those changes are. When you make a commit (or
when you commit), you tell git to record that bundle of changes as a new entry
in the history of your repository. Commits are the bare bone of your history :
all that you can do with git – branching, simultaneously maintaining different
versions, merging versions, going back in time – revolves around them.

Another way of seeing them is as checkpoints when you develop something. You
jotted down a new function, and had it working after some modifications. You
want to continue working on it but would like to be able to go back to that
working version with ease, in case the modifications do not work out well. This
is precisely when you would commit your changes, which is recording the state
of your function at this time, and be able to come back at it any time you want.

A single file is modified

Say you’ve added a new function in your code, or
just changed something in an existing one, and you want to record that change in
the git history. First, you add the change to the soon-to-come commit. This is
the moment you were writing the body of the follow-up mail to your manager in
the previous paragraph. The command is simple :

git add myfile

In the exemple below, I change a word in a printed message from the file
main.py, and I want to record that change. After using git add to add
the change to the commit, I actually do the commit. Making a commit is done with
the command :

git commit -m "your commit message here (short, less than 80 chars)"

The -m option allows you to write the message directly within the command.
You can also use git commit : it will open a terminal text editor (often
Nano [https://www.nano-editor.org/] or Vim [https://www.vim.org/]). It can be quite surprising at first, so for your first commits I
suggest you to stick to using -m "your message" when you commit. Using text
editors for commit messages is useful when you want to write long commit
descriptions – we’ll talk about that later.

[image: _images/1-2-simpleadd.png]
That’s it, your first commit is done. Below is a screenshot of the very first
two commits of this repository, visualised with GitKraken. As you can see, a
commit is indeed a point on your repository’s time line, with a message
that describes it to help remember what happened at that precise moment.

[image: _images/1-3-firstcommits.png]

Several files are modified

Obviously, most of the time you want to commit changes to several files in the
same commit, because it makes sense to gather thoses changes in the same history
point. The first option is to manually add each modified file to the commit with
git add. Soon enough you won’t remember exactly all the files that were
modified, so you need to get a list of what has changed. The command for that is

git status

In the exemple below, I made changes to several files and added a new folder.
Suppose I had a coffee in between and I don’t remember exactly what files I did
change. Using git status allow me to see which files are candidates to be added
to the commit, so that I can manually add the ones I want to commit, then
commit.

[image: _images/1-4-gitstatus.png]
Note that git understands the * wildcard for names of files. So if you want
to add to your commit all files that begin with xyz, you can simply type the
following to add them all at once :

git add xyz*

Note also that when you change files within folders, you can simply add the
folder and git will recursively add the files that have changed in it. Careful
though, do that only if you’re sure that all the changed files in the folder are
to be added to the commit (beware the infamous .DS_Store).

The combination of git status and git add is useful when you want to
select precisely the changes to add to the commit (which is, not adding all of
them), but can be a rather heavy procedure. To add all modified files to a
commit at once, simply use the -a option of git commit :

git commit -a -m "your message commit"

Again, always check with git status that you do want to add all files
before doing so. Often, unwanted files are recorded in history just because of
usage of the -a option (especially big files that you’re not supposed to
store on git). When a file is added to git, it is not that obvious to delete
it as if it was never there…

Note that the -a option does not include new files that were never in git
before. For those new files, you have to use git add. In such a case and if
you want to add at once new files and all modified files, feel free to use the
&& operator to make two commands on the same line : one to add everything,
the other to commit :

git add . && git commit -m "Add all modified files !"

Caution though, git add . is quite a risky command since it literally adds
every new or modified file in your repository. Always check with git status
that there are no unwanted files to be commited before using it.

How to decide which files to add to a commit ? This is up to you
really, but a good rule of thumb is that each commit should represent a coherent
version of your code (I’m not saying functional, just coherent). Say you’ve
modified two scripts, then documented them in documentation files, and finally
wrote unit tests.

A sensible choice here could be a first commit that includes
the first script, its documentation and tests, and a second commit that includes
the second script, its documentation and tests ! Even if it is not the order in
which you wrote things, it is an appropriate organisation of versions for every user
that might have a look at your code later.

Several files are modified, several times

Until now I made as if you would commit just in time after each modification.
All rigourous that you can be, sometimes it will not be the case. In that
situation, you may end up with a lot of files modified, and these modifications
would correspond to different steps in your work or different features.

In that case, you generally don’t want to add the whole file into the commit,
because you want to make it clear to others (or to future-you) that you first
worked on feature A on files X and Y, then on feature B on files X and Z. Adding
all X, Y and Z to a single commit makes it harder to know what happened in that
particuliar moment of the history, and which feature development it was
tackling.

The solution is to add hunks of your files to the commit. That is : you select
the precise lines in your files that will be added, while the others remain in
the list of non-committed changes. The easiest way to do that is the following
command, for instance for file X :

git add -p X

The -p option stands for patch. Git will display in the console each
hunk of your file that is a candidate to be added to the commit. By typing y
or n, you manually add lines of file X to the commit, so that you don’t mix
up features A and B in your commits ! That procedure is a part of
interactive staging [https://git-scm.com/book/en/v2/Git-Tools-Interactive-Staging], which offers a lot of possibilites that we do not cover
here.

[image: _images/1-5-gitpatch.png]
With this command, you’re starting to see that Git bash is not that friendly
when it comes to interact a little bit more than what you do for a simple commit. When you’re in
the case where you modified a lot of files, and still want to organise properly
the commits by adding the right parts of the right files in each commit, do use
a GUI to do the interactive staging operation.

It is not only easier, it is also safer since you clearly see what you’re doing.
From a terminal window, this is often not exactly right. Below is a screenshot
from GitKraken. Adding hunks of files is easy and transparent there, as it is
with most GUI.

[image: _images/1-6-krakenpatch.png]
Note that you do not control what Git sees as a hunk. It is in most cases quite
effective at severing them at relevant lines, but sometimes this forces you to
stage into the same commit lines that you would have wanted to keep in different
commits. Well, that’s a good reason to commit even more often. You can also
decide to select lines one by one, but again I strongly advise to that with a
GUI, for the sake of comfort and seing what you’re doing.

We’ll see later that you can squash numerous commits into few commits, so in
that matter, when you’re developing a new feature, or simply working hard and
making a lot of changes, do commit very often. You’ll have time to tidy up the
commits when the rush is behind you, and you won’t regret to have a detailed
history of all the changes you made, and unmade, and made back…

Time travel : an introduction

To this point we’ve only used git to go forward : making changes to the code,
then recording them, each commit adding a new point into the repository’s
timeline. Sometimes you commit something and it is only seconds before you
realise that you either forgot to add a file to it, or conversely you’ve
just added a 1Go csv data file that has no reason to be in your git history.

Here are some simple commands to fix this when it happened in the last commit.
When it happened way before the last commit, head over to the time travel
section !

Amend a commit to add missed changes

In this scenario, you’ve just commited and you realise after checking with
git status that you’ve forgotten to add a certain file. No worries here :
you can easily add supplementary changes to the last commit with the --amend
option. It also allows you to rewrite the commit message. If you do not provide a
message with -m "my commit message", it will use the previous value but will
still ask you to validate the message with the default text editor. The workflow
to amend a commit is :

git add file1
git commit -m "Add file1 and file 2"
Ah ! forgot to add file2
git add file2
git commit --amend -m "Add file1 and file2"

Amending a commit is already rewriting history, so be careful with that.
We’ll talk about that in more details below, but for now just remember that
you shouldn’t amend a commit that is already synchronised with the remote version of the repository.

Remove a file that has just been committed

In the second case scenario, you need to remove the file not only from the
commit, but also from the whole git history (otherwise that annoying 1Go will
stay there). In general, this is not an easy task, but we’re here in a special
case : the big file has appeared in the very last commit, which makes it not too
dangerous to cancel that commit without losing everything.

There are several strategies for that, here is the one that is to me the
simplest (but probably not the safest) : reset your repository to the commit
preceding the falty one, while keeping the changes that you’ve made to the
files. In other words, you say to git go back to where I was just before I commited that last commit,
so that you keep the files in the state they currently are at, but the commit itself
has disappeared from the history.

Technically, you have two options : reseting can be made with the option
--soft or --mixed.
The first will place you at the moment right before
you commited, that is, when changes were already staged for commit. The second will
place you at the moment where you made changes to the repository’s files but
staged none of them yet. There is a third option --hard
that speaks for itself : it cancels both the commit and the changes to the
files. For the purpose of demonstration, we will chose here a soft reset. Here
is the whole sequence, including the initial falty commit :

git add .
git commit -m "Read client names from csv datafile"
Damn it, this has just added a large clientdata.csv file !

git reset --soft HEAD~1 # this will reset the history to the previous commit
git status # list the files that were added to the commit in first place
 # with --soft, they remain staged after reseting
git reset HEAD clientdata.csv # this is it
git commit -m "Read client names from csv datafile"

You’ll see that there are two reset instructions in the exemple. The first one,
git reset --soft HEAD~1, applies to the whole repository, while the second
one git reset HEAD clientdata.csv applies to a single file. The
first one is the procedure described in the above paragraph. As it is for
--amend, you shouldn’t reset after commits that were already synchronised,
since it will create diverging histories the moment you commit something new from
the reset timeline. We don’t like diverging histories at all : they mess up
both contributing safely and the overall readability of the repository.

The second reset statement allows you to withdraw the given file from the list of files that are to be commited,
which is exactly what we want. Remember that thanks to the first reset,
git went back to the point where clientdata.csv was
a new file not appearing in the history.

The last statement is a simple commit, except that now clientdata.csv is not
included (you can check that on your git client) ! About this exemple, you would
probably want to add the large file to the .gitignore, so that you won’t
risk adding it ever again. You can do that simply with the following command :

echo clientdata.csv >> .gitignore

Another usage of git reset HEAD file is when you want to add all files but
a few to a commit. Instead of manually adding the ones you want with
git add ..., you can first add all of them with git add ., then withdraw
the few ones that you don’t want to commit with git reset HEAD unwanted_file.

Cancel changes to a file

Until now we were happy with the modifications we did to the files. The previous
commands helped us with organising the commits, but what happens if you’re unhappy
with the changes you’ve made on a file, even before thinking about a commit ?
When there have been a lot of changes, reverting them with the famous CTRL+Z
is not really a viable option.

Git offers a simple command to cancel all modifications made to a file, which is
done by putting it back to the state it was at the last commit :

git checkout -- filetocancel

Note the difference between git reset HEAD file and git checkout -- file :
the first one is used when you did stage the file with git add file and want
to withdraw it from the list of files to be committed, while keeping the changes that you’ve made on that file.
The second simply puts your file to the state it
was at the last valid commit, which is before you changed anything on it.

In other words, git reset HEAD file is not a destructive operation since
it only affects the commit, not the file itself. git checkout -- file do
affect the file, so think twice before using it because it makes the changes
simply vanish (for real) !

Cancel a (past) commit

It will happen that after several commits, you realize that you did something
wrong several commits ago. The problem is, you want to cancel what you did in commit
n-3 without removing what you did in commits from n-2 to n. You could use a soft
or mixed reset as seen above, but that’s likely to be complicated and unsafe.

Remember that a commit is a set of modifications to some files. So the right way
to cancel those modifications is to commit the reverse modifications. That is, if the
modifications in the falty commit are add a new line after line 66 to file A and add file B,
the reverse modifications will be remove line 67 in file A and remove file B.

You have two ways of specifying which commit(s) to revert : either by giving the
number of commits to look back from the current one, or with the falty commit id:

git revert HEAD # revert the current (last) commit
git revert HEAD~1 # revert the previous commit
git revert HEAD~3..HEAD # revert the last three commits

git revert 4be26a # revert commit with id 4be26a, a git GUI is your friend

Note that reverting a commit do create a new commit with the reverse modifications
and a default description “Revert commit X”. This says that you cannot change
the past by changing what was done in commit X, for it would mess up all
the subsequent commits. Let’s understand that a bit more.

Say that commit n-4 creates an empty file hello.txt,
and commit n-3 adds a "goodbye" line to hello.txt.
Should reverting commit n-4 actually change it, commit n-3 would then indicate
writing a line to a file that wouldn’t exist anymore, which is nonsense for git.

Instead, thanks to commiting the reverse modification of commit n-4, git simply
adds to the timeline a new modification which is delete file “hello.txt”. This is
much, much safer and robust. Below is a simple exemple of reverting the current
commit.

[image: _images/1-6-revert.png]
This shows quite well why it is important to atomize your commits while developing,
which is keeping the number of modifications appearing in a single commit low and
coherent. The more you do that, the easier it will be to revert while knowing
exactly what you’re reverting and what you’re not.

Temporarily store your changes

It will happen that you’ve made changes, and for any reason need to quit
working on what you were. You’re not really ready to make a clean commit,
meanwhile you’d like to save the changes, at least temporarily, so that you
don’t accidentally start over a new development while having forgotten that something
had changed.

When you use branches and collaborate with others, it will happen : while you’re
working on branch A, Joe asks for your help on a bug on branch B. If you try to
switch to branch B, git will probably refuse because you have unstaged changes that would otherwise be lost.

Enters git stash. This command stores your changes so that you can do
something elsewhere in the repository, and allows you to get back to it later, as
if you were never gone ! It actually is quite similar to a commit, except that
it does not record the changes in the timeline, but somewhere nearly invisible to you.

To yield your changes back, simply use git stash pop. Here is the workflow :

doing stuff on files here, on branch A
Joe is now asking for help on branch B
git checkout B # going to branch B won't be allowed because of unstaged changes
git stash # that's fine, just stash your changes
git checkout B # now it's ok to switch to branch B
helping Joe here
git checkout A # go back to the branch you were working on
git stash pop # yield the changes you made before so you can work again

At this point you undestand what is a commit and how to commit changes to
your files with precision, and even forgiveness in case of small errors.
Be sure to play with all the commands described here, since they are the ones
that you will use the most.

The more you control what’s in your commits and when to do them, the cleaner
and easier to read your timeline will be. Future-you and your partners will
be grateful for that. Now let’s dive into the first step to work with others
and develop new features safely : mastering branches and merge statements.

Your first steps with Git (part II)

In the previous section, we rapidly mentionned working with branches, which is all
this whole tutorial is about. Now that you know how to manage commits,
you will learn the upper-level usage of git : creating, managing and merging branches.

From commits to branches

When you first initialize a git repository, in the terminal window you’ll see
(master) appearing next to the folder path your at. This indicates which
git branch you’re checked out at, which is by default the master branch. We’ll
talk about branch names in a later section. For now let’s understand what is a
branch and what they are here for.

A fantasy of a lifetime

To understand what is a branch, let’s work with some fantasy. Imagine that your life
follows a timeline onto which things that happen to you are stored
(this is git). You can think of a branch as one possible path in that timeline.
In the real case, your life timeline is purely linear, which means you have only
one path where everything is happening, and it’s impossible to revert things that
have been done (spoiler alert, this is not suitable for your code).

Branches in git work as if you’d have the superpower to test different paths for your life,
or even making different lives exist simultaneously. That could be : I have job A,
and I would want to know what would be my life with job B.
So I create a job B branch, experiment with what my life is with job B, and
then I can decide if I prefer to keep job A or to move to job B.
Pushing to the extreme, I decide that I want to live both so I’ll create sort of
a duplicated life, where I have job A in one timeline, and job B in the other,
maintaining and living both of them simultaneously.

In the git world

This translates adequately to your code. Should it be a data
science project or a web application (or any other you fancy), you’re likely to
have a working main version of your code. In the meantime, you want to improve
or test new features, without risking to break anything on the
main version. This is especially true for a web application that
other people than you use or develop onto.

A branch roots from another branch (except the
master branch which is the origin of your git tree), more precisely from another
branch’s commit. Most of the time you don’t have to think about which commit you’re
creating the branch from, since it is likely to be the current one. But know that it
is also possible to create a branch starting at a chosen commit, for instance when
you know things went wrong after that commit, and you want to fix things without
modifying the main code nonetheless.

Tarzan, or creating and moving through branches

The git command to navigate through your code’s branches is git checkout. If
you created a brand new repository for this tutorial, you should now be on the
master branch. On the exemple below, git is checked out at a develop branch.

[image: _images/1-7-checkout-develop.png]
To create a new branch, use the following command:

git checkout -b my-new-branch

The -b option stands for branch and is used to indicate to git that the
branch is to be created. That command actually wraps the two following commands:

git branch my-new-branch # create my-new-branch but stay on develop
git checkout my-new-branch # move from develop to my-new-branch

On the screenshot below, I created the branch and git automatically moved to that
branch, whose name is visible in the parenthesis next to the current folder path.

[image: _images/1-8-checkout-new.png]
To see the list of available branches, use:

git branch # display only local branches
git branch --all # display all branches, including remote ones

So now that you have at least two branches, say master and my-new-branch,
you can choose either to commit on master, or on my-new-branch. Working on
my-new-branch allows you to work freely without affecting master. Once
you’re happy with what you did in my-new-branch and you want to add it to
the main code, you will proceed to a merge of my-new-branch onto master.

[image: _images/1-9-branches.png]
On the screenshot, you see the very first commits of this repository. The purple
branch is the main branch, always called master. From the third commit, I
created a new branch to work on a feature. On that feature branch, after a first commit,
I created a (blue) sub-branch, which was merged back on the first (light blue) feature branch.
Once completed, the (light blue) feature branch was then merged onto the master branch.

Note that you don’t necessarily have to merge a branch. You can use branches to
make drafts that will never be merged onto anything. In that case, the branch allows
you to try and break code without risk.

Merging branches and first collaborations

Now that you know both how to commit and create branches, let’s dive into the merge
flow. You merge a branch onto another when you want to update the target
branch with the work (i.e. the commits) that have been done on the merging branch.

This opens up a whole world of organising the way you work with branches, that is
how and when to merge branches. We’ll call a branching model the set of names
and rules you use to define how and when to merge branches in your project.
The simplest flow is : you don’t use branches at all and always work on master.
A more reasonable flow is to always create a branch to develop something, then
merge it onto master when the new feature is ready and satisfactory.

The more complex your project, the more critical it is to use a reliable and well
defined branching model. One of them, which is the object of this tutorial, is the
git flow branching model. We’ll talk about it in the next section. For now,
we’ll see the various ways of merging a branch onto another, and how to synchronise
your local repository with others’.

Three ways of merging a branch

Understanding how merges work is a critical part of a good usage of git and
a fluid collaboration. It is that tricky moment you put together the work done in
various parts of your code, and as such is subject to a lot of difficulties. So
take a break before entering that realm, and more than never experiment with your
own code to see how things work.

Git allows for three different types of merge. All of them do update the target
branch using the merging branch, but they produce a different timeline on the target
branch once the merge is done. Choosing which merge behaviour to use depends on various
factors that we’ll present here, and using this or that behaviour can be
a part of your project’s branching model.

The generic instruction to merge a branch onto another is git merge. Say you
have a feature/a-new-hope branch ready to be merged onto develop. I personnaly
never remember which is the order to use in the git command, so I first checkout
the receiving branch (in that exemple, develop), then merge. The flow is

git checkout develop # checkout the receiving branch
git merge feature/a-new-hope # merge the feature branch onto develop

Specify one of the option presented below to choose a specific merge behaviour.

Fast-forward merge

The default behaviour of git merge is a fast-forward merge when possible.
A fast-forward is really just placing the merging branch on top of the receiving one,
to obtain a fully linear timeline, as if you had done the commits directly to develop.

[image: _images/1-10-premerge.png]
On the screenshot above, two branches are available from the tip of develop.
We want to merge branch feature/a-new-hope onto it, with a fast-forward. After
merging (with the standard git merge feature/a-new-hope which uses a fast-forward
by default), we get the following timeline :

[image: _images/1-11-postff.png]
develop stays linear with the commits from feature/a-new-hope (which I
deleted after merging) added. We also see that the branch feature/section1-2 now
departs from an older commit of develop than the tip of it. This means that
you won’t be able to use a fast-forward merge of that branch onto develop, since
git cannot add the commits from it onto the last ones in a straightforward way.
If, in that configuration, you try git merge feature/section1-2 --ff-only,
git will abandon the merge because a fast-forward is impossible.

If you don’t provide the --ff-only option, git will use the merge commit strategy.
Sometimes you really want to use a fast-forward, so we’ll see later how to move
the merging branch along the tree, so that it can (almost) always be merged using a fast-forward.

Merge commit

The merge commit strategy is the one you’ll use the most when following the
git flow. It consists in agregating on the receiving branch all the modifications
from the merging branch in a single commit, while keeping the full detail of the
commits succession on the merging branch. Here is what it looks like :

[image: _images/1-12-mergecommit.png]
On the screenshot above, you see a feature branch comprised of three commits, that
were merged onto the receiving branch using a single commit that makes the junction
between the two branches. There are two main advantages of using merge commits :

	it keeps the timeline of the receiving branch clean and concise, since every
new functionality is added through a single commit, contrary to fast-forward
merges where all the commits are added on top of the receiving branch. This
allows precise tracking of modifications on the important branches, while keeping
the detail of the development history on the feature branch.

	the merge commit itself is a great place to provide detailed explanation about
the new feature. Often your working commits are not all self-explanatory, and
navigating throughout the history may be harsh, so having a merge commit that
explains it all is of great help to other developers that need to know what
modifications were added by this merge.

The command for a merge with a merge commit is (from the receiving branch) the
following. It actually stands for no fast-forward, since, has said previsouly,
git will by default perform a merge commit when a fast-forward is not available:

git merge --no-ff

Git provides a default value for the merge commit message which is something like
merge branch <merging branch> onto <receiving branch>. You can keep that first
line untouched while adding explanations below, or replace it with a more self-explanatory
message. We’ll see in the next section how to write good commit messages. Also know that the
merge commit is often the default behaviour of git hosts such as github, gitlab
or bitbucket (we’ll see that in the pull requests section), because it perfectly
embodies the flow of developing something on a feature branch then adding it all
at once on the development or production branch.

Merge-and-squash

There’s a last option that I don’t recommend using in general : a squash merge.
To me, it is kind of a bad compilation of the two previous ones. The behaviour is
the following : with a squash merge, all the modifications from the feature branch
are squashed into a single commit, which is added on top of the receiving branch.
Here it how it looks like, before and after.

Before, the feature branch feature/squashsquash departs from develop
and is comprised of three commits.

[image: _images/1-13-beforesquash.png]
I then squash-merged that branch onto develop with
git merge feature/squashsquash --squash. When performing a squash, you’re
creating a new commit out of the branch’s ones, so you need to use git commit
with a message to validate the squash. Once done, the timeline looks as follow :

[image: _images/1-14-aftersquash.png]
You see that a new commit was added directly onto develop, while the branch
feature/squashsquash remains living and not seemingly merged into develop.

Here is why I say it is a bad compilation of a merge-commit and a fast-forward :

	since the result is a commit directly on develop timeline, it will
be really hard to distinguish between commits that add a new feature to your
code and commits that are usual commits (bug fixes, small commits, etc). When
the develop timeline will be long (and it will), you’ll have a hard time
trying to find where (ie on which commit) you added that buggy feature.

	since you combine all the branch’s commits into one, you’ll loose the detail
of the branch development history, which is quite useful for debugging.
Note that once squashed, you’re supposed to delete the merging branch, so you
will definitely lose the branch details. Conversely, a merge commit, even if
you delete the merging branch, keeps the detail of the development history.

The single case in which I use squash merges : you want to fix something or add
a really simple thing to develop. You could do it with a normal
commit, but you know that it is likely that the first trial won’t be good enough.

So instead of ending up with three commits because the first wasn’t working, with
the last two being “Fix previous commit” (😱), or repeatedly amending that first
commit until it works (we’ll see later why one doesn’t want to amend things on
develop), you can create a branch, freely do your stuff there – even naming
the commits with bad messages – and when you know the modifications are ready to be merge,
perform a squash merge, then delete the branch. This is precisely what branches are
for : allowing a trial and error development while keeping the important clean
and tidy.

There’s a good thing about squashes though : they can agregate numerous commits
into a single one. The idea of keeping a relatively short development history is
good, since it will help identifying milestones in your code, thus making
debugging a lot easier than having to look for a bug in a thousand commits.

There are other ways to squash your timeline than the squash merge. We’ll see that
in the collaboration part of this tutorial. For know, just remember that in most
cases the merge commit strategy is the preferred one.

Synchronise with the rest of the world

For now we’ve only talked about managing our own version of the repository you’re working onto. You might remember
though that I said to avoid as much as possible rewriting history for branches that are shared with others
(mostly develop and master). We’ll see know how sharing with others work.

Remote and local version

In most cases, the repositories you’re working onto are hosted and synchronised somewhere on the web, on dedicated websites
such as github [https://github.com], gitlab [https://about.gitlab.com] (where this repository is hosted), or bitbucket [https://bitbucket.org/product/]. The version of the repository that is
hosted on the cloud and thus shared by everyone is called the remote version of the repository. You can find easliy
the remote url of any repository by typing

git remote get-url origin

Contrary to simple files hosting services such as the infamous Dropbox (never use it for hosting code. Never), git does
not automatically synchronise changes between your local version and what’s on the online version, for a simple reason :
it is not always straightforward to know how to merge various changes that have been made in several places. On Dropbox,
that would result in a conflicted copy of Danny’s version.

There’s another reason too : you don’t have to synchronise everything you do. As the remote version is the one that is
shared and accessible by everyone, you might want to keep it clean and sound, without adding all of the sketches that
you may have made locally. Let’s see what the instructions to synchronise your work and get other’s are.

Synchronising your changes : pushing

The first thing to know is how to publish your changes on the remote. That is, you’ve made a series of commits on a given
branch – locally – and you want those commits to be saved on the remote version (for backup reasons, or to share it with
others). On the below example, I have a branch feature/push-pull comprised of three commits. As you can see, there’s only
a computer icon next to the branch’s name : that is GitKraken’s way of indicating that it is only a local branch. You can
compare with the icons next to develop, where there’s the computer and the avatar of the gitlab account where the remote
is.

[image: _images/1-15-before-push.png]
I want to synchronise this branch with the remote so that, for instance, my friend Danny can see what I’ve made. The git
term for that is push. It is rather intuitive : you’ve made some changes locally, and you push them onto the remote
version so that they appear here to, thus being available to anyone contributing to the repo. The command for that is

git push # push when being checked out at the branch you wish to push

If you try to push a branch that you’ve just created locally, git will refuse that push with the indication that it
couldn’t find a remote reference matching with the branch you’re trying to push, and will hint the following command

git push --set-upstream origin feature/push-pull

What happens here is that the branch does not exist yet on the remote version, and pushing can only work on a branch
that exists. So --set-upstream origin feature/push-pull indicates that the local branch feature/push-pull must
be pushed to a new branch on the remote called feature/push-pull too. You can mismatch names between local branches
and remote ones, but that’s only prone to confusion and not advised at all.

Update your local with the remote : pulling

The reverse operation is called (surprise) pulling. When you pull a branch from the remote, you’re telling git to
apply to your local branch the commits that were found on the repository and that you don’t have yet locally.
Pulling modifies your files locally according to the modifications listed in the commits you’re pulling from the remote.
So you might want to detect changes in the remote without pulling them, in case those changes mess up with what you
have locally, or just because you don’t want them. The command for that is

git fetch

This simply tells git to kind of ping the remote to know what the available changes are. It will detect not only new
commits on the current branch, but also new branches. This is of use when you want to get locally a new branch
that was created on the remote by someone else. You could create the branch locally then set its upstream to the remote
one, but that’s a rather heavy procedure for the task.

Instead, simply fetch first, then checkout to the branch as if it already existed locally.
Since git has fetched the remote branch, it knows that it exists on the remote, and just has to make a copy of
it on your local version. That usually is done in one single command

git fetch && git checkout a-new-remote-branch

Pulling is full of surprises and often doesn’t work as expected. Let’s see how it works in the simplest case, were you
did nothing locally but there were modifications pushed by others. On the below example, the computer icon indicates where
is my local version of feature/push-pull. As you can see, there are three commits available on the remote that I
don’t have on my local branch.

[image: _images/1-16-pulling.png]
If you use git status while being checked out at feature/push-pull, git will indicate that your branch is late
and can be fast-forwarded, using the following command

git pull

And that’s it ! Your local version of feature/push-pull has just been updated with the commits that were available
on the remote branch feature/push-pull. The basic workflow is thus pretty simple : use git fetch to know the
changes available for pulling, then git pull to actually get those changes (you can also just pull, because it
fetches automatically before). Then, commit as you want,
and use git push to update the shared version of the repository with your changes.

You might have noted that pulling was made in the above example with a fast-forward, which is the same term that is
used for merging branches. That’s for a reason : pushing and pulling is actually nothing more than merging two branches,
the local and the remote. When you pull, you’re merging the remote branch onto your local branch, that is applying on your local
branch the commits that were made on the remote one. Conversely, when you push, you’re merging your local branch onto
the remote one.

Distribution and priorities

Since pushing and pulling is actually merging, the same problems that can occur with merges occur when synchronising
local and remote versions. In most cases pushing and pulling is done with a fast-forward, but it is not always possible.
Being unable to push and pull freely is one of the most annoying thing when you start using git.

You made changes that
you’re not allowed to push because someone else has also made changes and pushed them before. What’s the point of
using such a complex tool if it is not able to handle that kind of recurrent situation on its own ? This is when the distributed
part of DCVS that I mentioned in the introduction comes into play.

Git does not consider the remote version of the repository as primary. Even if it is often the origin for all the
various local repositories that you and your team work on (you can read more about that here [https://stackoverflow.com/questions/38837705/what-is-the-difference-between-origin-and-remote-in-git-commands]),
the commits there will not be by default applied before yours.

Instead, any clone of the repository can contribute equally to all the other clones, including the remote,
so that when there are several possibilities of merging branches or adding new commits, it’s up to you to place git in a
situation where there will be a non-ambiguous way to merge things,
or to tell it which way it should merge among all the possibilities.
The responsability is distributed among all clones of the repository, without any being central to others.
In the Collaborating with git section, we’ll dive into that subject to learn what to do when a fast-forward is not available,
and how to avoid being in that situation in the first place.

Up to this point you already know all that is needed to contribute to a repository when things are straight-forward :
you know how to commit changes, amend them if needed, create and navigate through branches, merge them and push/pull
the changes to the remote and shared version of the repository.

As you can guess, things can get tricky – and they will, and that’s why one defines branching models,
which are a set of rules and conventions that dictates how branches should be created and interacted with,
to make the process of merging and synchronising more fluid and safer for every one.

Gitflow branching model

Collaborating with git

Commit messages conventions

Basic Git commands

Commiting changes

git add file1 # add file1 to soon-to-come commit
git add file2 # add file2 also
git commit -m "Update file1 and file2"

git add file* # add all files starting with `file`

Add all changed files and commit, does not include new files
git commit -a -m "Your commit message"

git status # display the list of changed / added files

Add all files including new ones, then commit
git add . && git commit -m "Your commit message"

git commit -a # No -m option will open up a text editor

git add -p file1 # Add hunks of file1 in interactive mode

Time flexibility : reset, checkout, amend, revert and stash

reset the git history to the previous commit while
keeping the changes to files, and keeping them added
git reset --soft HEAD~1

same but changes are not added here
git reset --mixed HEAD~1

changes are all cancelled /!\ DANGER /!\
git reset --hard HEAD~1

git reset --soft HEAD~n # soft reset to the n-th commit backwards

withdraw file1 from the list of files included in the commit to come
git reset HEAD file1

cancel uncommited changes to file1
git checkout -- file1
git checkout -- . # cancel all uncommited changes

git commit --amend # rewrite the last commit

revert previous commit
git revert HEAD~1

revert last three commits
git revert HEAD~3..HEAD

revert specific commit
git revert 34abe9

git stash # stash your changes to store them temporarily
git stash pop # apply the stashed changes to start over from there

Branches basics

Create and navigate

create a new branch with name mybranch
git branch mybranch

move to (checkout) that branch
git checkout mybranch

create the branch then checkout
git checkout -b mybranch

list branches
git branch # local branches only
git branch --all # include remote branches

Merges

All the following merges are to be made while being checkout out at the
receiving branch.

default merge instruction, fast-forward if possible, other wise
merge commit
git merge mybranch

fast forward only (will abandon if not possible)
git merge mybranch --ff-only

no fast-forward, which means a merge commit
git merge mybranch --no-ff

squash merge – not to use in general
git merge mybranch --squash

Synchronise

ping the remote to list all changes available
git fetch --all

pull the changes available (fast-forward if possible) for the current branch
git pull

push the local commits to the remote branch
git push

Index

 _static/down-pressed.png

_static/down.png

_images/1-13-beforesquash.png
B Write goodby into afile.txt
B Write hello into afile.txt

‘+ Add afile.txt

feature/section... & O %} Merge flow section
® Add revert section to section1-1
B Write branch introduction

Merge branch 'release/section-1-a' into 'develop'

develop g O

_static/minus.png

_images/1-14-aftersquash.png
_—-. Squashed commit of the following:

feature/squashsqu... O B Write goodby into afile.txt

B Write hello into afile.txt

‘+ Add afile.txt

feature/section... & O %} Merge flow section

® Add revert section to section1-1
B Write branch introduction

master & O +1 Merge branch 'release/section-1-a' into 'master"

EVETT Merge branch 'release/section-1-a' into 'develop'

_static/plus.png

_images/1-11-postff.png
feature/section... & O | %} Merge flow section

| 2 You burn the books
| ‘+ Add generic file

| ® Add revert section to section1-1

| B Write branch introduction

_images/1-12-mergecommit.png
| B Add rainbow argument to main

- Merge feature branch that adds colours to wheel

| @ Choose between normal wheel and a rainbowing wheel

| "\ Add and test ColourPen class

_static/file.png

_images/1-2-simpleadd.png
(venv) romain@romain ~/projets/git-flow-tuto (master)

[$ git add main.py

(venv) romain@romain ~/projets/git-flow-tuto (master)

[$ git commit -m "Change 'excellent' to 'cool' in printed message"
[master 886fc12] Change 'excellent' to 'cool' in printed message
1 file changed, 1 insertion(+), 1 deletion(-)

(venv) romain@romain ~/projets/git-flow-tuto (master)

s

_static/up.png

_images/1-3-firstcommits.png
| B Add wheel function

| » Initial commit with .gitignore

_images/1-15-before-push.png
Remove toto.txt

| Write hello into toto.txt
| Add toto.txt

develop g O | @ Trim general introduction

_images/1-16-pulling.png
feature/push-pull |&]

feature/push-pull O

develop |§ O

Delete another text file
Write bye bye to another
Add another text file
Remove toto.txt

Write hello into toto.txt
Add toto.txt

@ Trim general introduction

_static/up-pressed.png

_images/1-4-gitstatus.png
(venv) romain@romain ~/projets/git-flow-tuto (master)

$ git status

Sur la branche master
Votre branche est & jour avec 'origin/master'.

Modifications qui ne seront pas validées :
(utilisez "git add <fichier>..." pour mettre & jour ce qui sera validé)
(utilisez "git checkout —- <fichier>..." pour annuler les modifications dans la copie de travail)
modifié README.rst

modifié requirements.txt

Fichiers non suivis:
(utilisez "git add <fichier>..." pour inclure dans ce qui sera validé)

build/

_images/1-5-gitpatch.png
(venv) romain@romain ~/projets/git-flow-tuto (feature/section-1-1-3)

'$ git add -p docs

diff --git a/docs/source/1-first_steps.rst b/docs/source/1-first_steps.rst

index bffb33a..235a4ce 100644

--- a/docs/source/1-first_steps.rst

+++ b/docs/source/1-first_steps.rst

Q@ -146,6 +146,8 @@ folder and git will recursively add the files that changed in it. Careful
though, do that only if you're sure that all the changed files in the folder are
to be added to the commit.

+A new sentence for a new hunk !
+

The combination of '‘git status'' and "‘git add'" is useful when you want to
select precisely the changes to add to the commit (which is, not adding *allx of
them), but can be a rather heavy procedure. To add all modified files to a
Stage this hunk [y,n,q,a,d,j,3,9,/,e,217 |

_images/1-1-clone.png
Romain@HBP-de-Romain ~
5 cd geek/git-flow-tuto/

Ronain@BP-de-Ronain ~/geek/git-Flov-tuto (master)
s

_images/1-10-premerge.png
2 You burn the books

‘+ Add generic file

feature/section... & O %} Merge flow section
® Add revert section to section1-1

B Write branch introduction

develop g O Merge branch 'release/section-1-a' into 'develop'

_images/1-6-krakenpatch.png
[=] docs/source/1 -first_steps.rst

& Edit this file Unstaged File View Diff View Blame

\@\@ -146,6 +146,8

146 146 though, do that only if you're sure that all the changed files in the folder are
147 147 to be added to the commit.
148 148

149 + A new sentence for a new hunk !

150 +
149 151 The combination of ~“git status ™ and "“git add ~ is useful when you want to
150 152 select precisely the changes to add to the commit (which is, not adding *all* of
151 153 them), but can be a rather heavy procedure. To add all modified files to a

\e\e@ -178,6 +180,45
178 180 Several files are modified, several times
D79 181 i e NN NS
180 182
183 +Until now I made as if you would commit just in time after each modification.
184 +All rigourous that you can be, sometimes it will not be the case. In that
185 + situation, you may end up with a lot of files modified, and these modifications

186 +would correspond to different steps in your work or different features.
197 o

History

+

Stage File | X
£ 2 = | @ qa
Discard Hunk | | Stage Hunk

Discard Hunk

Stage Hunk

nav.xhtml

 Table of Contents

 		
 Git and Gitflow tutorial

 		
 A non-technical presentation of Git

 		
 Your code’s diary

 		
 Tools, knowledge and rules

 		
 Combine Git bash with a cool Git client

 		
 Your first steps with Git (part I)

 		
 Fundamentals : the commit

 		
 A single file is modified

 		
 Several files are modified

 		
 Several files are modified, several times

 		
 Time travel : an introduction

 		
 Amend a commit to add missed changes

 		
 Remove a file that has just been committed

 		
 Cancel changes to a file

 		
 Cancel a (past) commit

 		
 Temporarily store your changes

 		
 Your first steps with Git (part II)

 		
 From commits to branches

 		
 A fantasy of a lifetime

 		
 In the git world

 		
 Tarzan, or creating and moving through branches

 		
 Merging branches and first collaborations

 		
 Three ways of merging a branch

 		
 Synchronise with the rest of the world

 		
 Gitflow branching model

 		
 Collaborating with git

 		
 Commit messages conventions

 		
 Basic Git commands

 		
 Commiting changes

 		
 Time flexibility : reset, checkout, amend, revert and stash

 		
 Branches basics

 		
 Create and navigate

 		
 Merges

 		
 Synchronise

_images/1-8-checkout-new.png
romain@romain ~/projets/git-flow-tuto (develop)

[$ git checkout -b my-new-branch

Basculement sur la nouvelle branche 'my-new-branch'
romain@romain ~/projets/git-flow-tuto (my-new-branch)

s

_images/1-9-branches.png
‘t Specify length and time of wheel execution in command line
. Allow command line arguments for length and time

2 Write docstring of wheel function

+ Add main with wheel call

B Add wheel function

» Initial commit with .gitignore

_images/1-6-revert.png
| Revert "Bl Add some text to hello.txt"
| B Add some text to hello.txt

| ‘+ Add hello.txt

_images/1-7-checkout-develop.png
romain@romain ~/projets/git-flow-tuto (develop)

sl

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

