
Git and Gitflow tutorial
Release 0.0.3

Mar 22, 2020

Tutorial

1 What you will find here 3

2 Contents 5

3 Do code while reading 7

4 Contributing 9

5 About me 11
5.1 A non-technical presentation of Git . 11
5.2 Your first steps with Git (part I) . 12
5.3 Your first steps with Git (part II) . 20
5.4 Gitflow branching model . 28
5.5 Collaborating with git . 28
5.6 Basic Git commands . 28
5.7 Branches basics . 29

i

ii

Git and Gitflow tutorial, Release 0.0.3

This page is only the README landing page for the repository, head over to
https://git-flow-tutorial.readthedocs.io/en/latest/ for the tutorial itself

Welcome ! This repository contains a tutorial to learn how to use Git and Git flow to collaborate on code with
others. Should you be a total newbie to git, you’ll find (almost) everything you need to learn the basics and become
autonomous on a small project. You may already be familiar with most git commands, but are not satisfied with the
way you use it, because you do not really know how to collaborate effectively, what are the best practices, or you feel
that you’re not making the most of the branching system.

In both cases, this tutorial will help you see Git as a helpful coding partner, rather than that painful bash-thing that
your team and teachers make you use without really explaining to you its principles, power and versatility. This is not
a Learn Git in five minutes tutorial, rather something in between a single page tutorial and a small book.

Tutorial 1

https://git-flow-tutorial.readthedocs.io/en/latest/

Git and Gitflow tutorial, Release 0.0.3

2 Tutorial

CHAPTER 1

What you will find here

If you’re totally new to Git, read the general introduction ! It is sure rather long, but it explains you what Git is
without any technical considerations, so that you can start the tutorial with an already clearer idea of the big picture.
I remember the first time I was presented with Git : everyone was talking about do you commits, use branches, Git is
super powerful . . . Since no one really knew what it was for and how to use it the right way, it soon became an evil
tool that was only repeatedly breaking my code with awful <<<<<<< HEAD lines, and that’s it !

So take the time to understand Git without having to think about any terminal window, it will save you tons of time
and energy wasted speaking a language that you know the words but don’t understand yet.

3

https://git-flow-tutorial.readthedocs.io/en/latest/introduction.html

Git and Gitflow tutorial, Release 0.0.3

4 Chapter 1. What you will find here

CHAPTER 2

Contents

The first section is all about the basic commands that you would learn during your first encoutering with Git in any
other tutorial. It is crucial since they are the ones that you’ll use tons of time and that should become reflexes. If
you’ve already been using Git for at least one or two months, you can go fast on that one, cherry-pick the subsections
that are new to you, or go straight into the second section, about branching models and collaborating.

From then on, rather than giving you an unordered list of things you need to know, the tutorial is built so as to reproduce
the usual steps of code development in a team, to accompany you from the writer’s block to succesful collaboration
and conflicts resolution with your team.

5

Git and Gitflow tutorial, Release 0.0.3

6 Chapter 2. Contents

CHAPTER 3

Do code while reading

You can obviously read that tutorial without coding, but you’re likely to forget almost everything when you’re done.
Feel free to use a personal repository to apply stuff you’ll read here, or to clone the repository associated with these
tutorial to have at hand an exemple of a repository following (most of the time) the ideas and principles you’ll hear
about here.

There’s a little python script in it that makes a good material to train on. You can download and install python here.
Do not fear to break things : this repository is protected from anyone but me trying to modify existing things. So
please play with the instructions and do break things, for it is the best way to learn, and you’ll always be able to delete
everything and clone the tutorial again, or simply go back to before you broke something (that’s precisely the thing
about Git). If you don’t know python, just use any type of text file you want to use as food for git.

7

https://gitlab.com/roamdam/git-flow-tuto
https://www.python.org/downloads/

Git and Gitflow tutorial, Release 0.0.3

8 Chapter 3. Do code while reading

CHAPTER 4

Contributing

I welcome suggestions through merge requests ! You’ll see that the little code used to give examples in the tutorial
uses pyux package, which I did too because I love that kind of little but helpful packages. Feel free to check it out.
Comments and merge requests are welcome here too.

9

https://pypi.org/project/pyux-track/

Git and Gitflow tutorial, Release 0.0.3

10 Chapter 4. Contributing

CHAPTER 5

About me

I’m a data scientist, not a real developer, and not a pro git user at all. But I like git, and I like to explain things, so here
it is. I think not being a pro on the matter is a good thing to the purpose of this tutorial : make someone new to git
and a little bit lost able to use it in a proper yet simple way. I’ll try to keep the explanations user-oriented and not too
technical, which you probably don’t need.

5.1 A non-technical presentation of Git

5.1.1 Your code’s diary

Strictly speaking, Git is a distributed version control system (DVCS), which means, a set of tools organised for a clear
purpose : give you control over the state your code is at, past and present. That’s for VCS. We’re not interested for
now in the distribution part, you can read some details about it here !

You can think of Git as a high-end collective diary for your code. It enables you to save and comment on your
progression at any time, in a very detailed way if you want to, or in a bulky way if that’s your preference. Just as you
would read past pages of your diary to remember how you felt about those holidays last summer, you can tell Git to
bring back an old version of your code, in case your recent work has broken something, for instance, and start over
from there.

You can use it to work on ideas, sketch things, and decide later if you want to integrate those ideas to your code and
how. You can even truly experiment on crazy ideas without affecting the existing, note things about it, decide if it
is worth adding to the existing, show it to people to hear their opinion about it, maybe change some things here and
there. . . The fun part comes with the collective in it. When you work alone, it is not that hard to know what has
happened and what is happening. As soon as you collaborate with others on the same repository, knowing how to use
this diary becomes harder yet critical.

5.1.2 Tools, knowledge and rules

Writing a diary requires several things : the diary itself, one or more pens. It also requires that you know how to write,
so you and others can read and understand your work. When you get comfortable with writing, you start to use more

11

https://opensource.com/article/17/12/fork-clone-difference

Git and Gitflow tutorial, Release 0.0.3

advanced tools : different colors and stylings, bookmarks, etc. Lastly, you implicitely or explicit set some rules : a
title starts on the top, write today’s date on the top-right corner, do not use more than one page for a single day, etc.

This tutorial will guide through the exact same things applied to using Git to collaborate on code. If you are new to
it, you first need to get acquainted with the basic tools (I’ll say commands from now on) that everything will be built
upon. This you’ll learn in the following section Your first steps with Git (part I) and Your first steps with Git (part II).

At this point, you’ll be ready to learn how to collaborate with others on a repository. Collaborating – except if you’re
looking for chaos – requires that you settle on a shared set of rules, meant to be abide by everyone. Those rules are
often ideals, that are difficult to follow every time you code. Just remember that they often come from people that have
already handled the exact same problems as the ones you’ll face one day, and that those rules intend to ease them. So
trust them ! We’ll present in section Gitflow branching model, a workflow that is not the simplest but has proved to
work in many situations : git flow.

Once you know the basics and the theory of collaboration with git flow, you’ll be presented with other Git tools that
tremendously help with maintaining a clean and usable history of your code. Those tools need some more attention,
since they can erase things and change history : you don’t really want to mess up with time ! But with Git, actually
you can – sometimes. More on that in Collaborating with git section.

5.1.3 Combine Git bash with a cool Git client

To use Git, you enter commands that do stuff : save, comment, go back in time, merge different versions of your code,
etc. The first way to do that – the one you should start with, is using Git bash or a terminal window (if you’re working
on Linux or MacOS). Writing instructions is easy there, but it is far less convenient to explore and visualise the history
and changes within your code.

To do so, you can use a graphical user interface (GUI), also referred to as Git clients. These are softwares that allow
you not only to visualise and explore the git tree, but also to run most of the git commands without having to type
them in a terminal window. You’ll often read that it is best to learn how to use git bash before using a GUI, because
otherwise you may end up dependant of your GUI : it prevents you from truly knowing how to talk to git or how to
handle difficult cases that the GUI is not built for.

GUI are of no help when it comes to using virtual machines : since, in most cases, you communicate with them from
a terminal window, you need to know raw git commands. I thus totally agree with the idea that you should do the
whole tutorial from Git bash or a terminal window. However, I also strongly recommand that, in the meantime, you
download a GUI of your choice, only to visualise what the commands do and the state of the git history. A git tree can
easily be messy and intricate, and Git built-in visualisation commands are not friendly for complex cases.

None of the exercices below require a GUI, but having it along the way will undoubtedly help you with knowing what
you’re doing and remembering what are the various commands for. A widely use git client is sourcetree. I personnaly
use GitKraken, without any strong reason to except that it has a cool name and a dark theme. Both of them are free (at
least for open source packages with GitKraken). All screenshots that you’ll see here are taken from this repository’s
tree, visualised with GitKraken. You can find a list of GUI on Git official website.

5.2 Your first steps with Git (part I)

Encountering Git is not an easy task : as any powerful tool, it requires some practice before rendering your coding life
easier than it already was. Before helping with collaboration with others, it is first and foremost meant to control and
navigate the history of your code. That makes it something you also want tonuse on your own, because it helps with
keeping track of what you’ve done before (and you will forget it), experimenting on things without risking any bugs
thanks to the branching system, and, if you’re that serious, even reviewing your own code !

There are a lot of commands, but the vast majority of your usage will revolve around less than a dozen ones. They
are the building blocks of everything else, so take the time to know them well, because they will appear everywhere
in the more advanced sections. Do not force you to remember them : first, you can use the recap of all the commands

12 Chapter 5. About me

https://www.sourcetreeapp.com/
https://www.gitkraken.com/
https://git-scm.com/downloads/guis

Git and Gitflow tutorial, Release 0.0.3

mentionned in the Basic Git commands page, and also you’ll use them so often that soon you won’t have to think about
them anymore.

We don’t cover installing git on your machine here : there are plenty of ressources online that can help you with that,
starting with the git website itself. Once git is installed on your computer, find a repository of codes that you can work
on freely. If any, you can clone the repository you’re now reading from. Open up a terminal window and go to the
folder you want to clone the repository into (Pandoc has great instructions to do that from a terminal if that too is new
to you), then type

git clone git@gitlab.com:roamdam/git-flow-tuto.git

This will download a folder with name git-flow-tuto, and if you go into that directory with cd
git-flow-tuto, you’re likely to see a (master) next to the path your terminal window is at. We’ll dive into the
master things later on, for now it is just the sign that the folder you’re in is indeed a git repository. If you want to
use your own folder, which may already exists, simply go to that folder from the terminal and type git init. This
will initiate a git repository. You’re good to go !

If you haven’t done it yet, I suggest again that you install a GUI to help you visualise what’s happening ! Here are
again the links for GitKraken or Sourcetree

5.2.1 Fundamentals : the commit

What happens when you write to your manager, your team or your teacher to tell them what you’ve worked on today
? First you may make a list of what you did, to recap the changes. Then you may write the body of a mail describing,
in a more or less detailed way, what you did. Finally, you may send the mail. In git, the commit is precisely that mail.
Here is the definition from the Git glossary

A single point in the Git history; the entire history of a project is
represented as a set of interrelated commits

In other words, a commit is a bundle of selected changes in your files, with a message describing what those changes
are. When you make a commit (or when you commit), you tell git to record that bundle of changes as a new entry in
the history of your repository. Commits are the bare bone of your history : all that you can do with git – branching,
simultaneously maintaining different versions, merging versions, going back in time – revolves around them.

Another way of seeing them is as checkpoints when you develop something. You jotted down a new function, and had
it working after some modifications. You want to continue working on it but would like to be able to go back to that
working version with ease, in case the modifications do not work out well. This is precisely when you would commit
your changes, which is recording the state of your function at this time, and be able to come back at it any time you
want.

A single file is modified

Say you’ve added a new function in your code, or just changed something in an existing one, and you want to record
that change in the git history. First, you add the change to the soon-to-come commit. This is the moment you were
writing the body of the follow-up mail to your manager in the previous paragraph. The command is simple :

git add myfile

5.2. Your first steps with Git (part I) 13

https://git-scm.com/downloads
https://pandoc.org/getting-started.html#step-2-open-a-terminal
https://www.gitkraken.com/
https://www.sourcetreeapp.com/
https://git-scm.com/docs/gitglossary

Git and Gitflow tutorial, Release 0.0.3

In the exemple below, I change a word in a printed message from the file main.py, and I want to record that change.
After using git add to add the change to the commit, I actually do the commit. Making a commit is done with the
command :

git commit -m "your commit message here (short, less than 80 chars)"

The -m option allows you to write the message directly within the command. You can also use git commit : it will
open a terminal text editor (often Nano or Vim). It can be quite surprising at first, so for your first commits I suggest
you to stick to using -m "your message" when you commit. Using text editors for commit messages is useful
when you want to write long commit descriptions – we’ll talk about that later.

That’s it, your first commit is done. Below is a screenshot of the very first two commits of this repository, visualised
with GitKraken. As you can see, a commit is indeed a point on your repository’s time line, with a message that
describes it to help remember what happened at that precise moment.

Several files are modified

Obviously, most of the time you want to commit changes to several files in the same commit, because it makes sense
to gather thoses changes in the same history point. The first option is to manually add each modified file to the commit
with git add. Soon enough you won’t remember exactly all the files that were modified, so you need to get a list of
what has changed. The command for that is

git status

In the exemple below, I made changes to several files and added a new folder. Suppose I had a coffee in between and I
don’t remember exactly what files I did change. Using git status allow me to see which files are candidates to be added
to the commit, so that I can manually add the ones I want to commit, then commit.

14 Chapter 5. About me

https://www.nano-editor.org/
https://www.vim.org/

Git and Gitflow tutorial, Release 0.0.3

Note that git understands the * wildcard for names of files. So if you want to add to your commit all files that begin
with xyz, you can simply type the following to add them all at once :

git add xyz*

Note also that when you change files within folders, you can simply add the folder and git will recursively add the
files that have changed in it. Careful though, do that only if you’re sure that all the changed files in the folder are to be
added to the commit (beware the infamous .DS_Store).

The combination of git status and git add is useful when you want to select precisely the changes to add to
the commit (which is, not adding all of them), but can be a rather heavy procedure. To add all modified files to a
commit at once, simply use the -a option of git commit :

git commit -a -m "your message commit"

Again, always check with git status that you do want to add all files before doing so. Often, unwanted files are
recorded in history just because of usage of the -a option (especially big files that you’re not supposed to store on git).
When a file is added to git, it is not that obvious to delete it as if it was never there. . .

Note that the -a option does not include new files that were never in git before. For those new files, you have to
use git add. In such a case and if you want to add at once new files and all modified files, feel free to use the &&
operator to make two commands on the same line : one to add everything, the other to commit :

git add . && git commit -m "Add all modified files !"

Caution though, git add . is quite a risky command since it literally adds every new or modified file in your
repository. Always check with git status that there are no unwanted files to be commited before using it.

How to decide which files to add to a commit ? This is up to you really, but a good rule of thumb is that each commit
should represent a coherent version of your code (I’m not saying functional, just coherent). Say you’ve modified two
scripts, then documented them in documentation files, and finally wrote unit tests.

A sensible choice here could be a first commit that includes the first script, its documentation and tests, and a second
commit that includes the second script, its documentation and tests ! Even if it is not the order in which you wrote
things, it is an appropriate organisation of versions for every user that might have a look at your code later.

Several files are modified, several times

Until now I made as if you would commit just in time after each modification. All rigourous that you can be, sometimes
it will not be the case. In that situation, you may end up with a lot of files modified, and these modifications would
correspond to different steps in your work or different features.

5.2. Your first steps with Git (part I) 15

Git and Gitflow tutorial, Release 0.0.3

In that case, you generally don’t want to add the whole file into the commit, because you want to make it clear to others
(or to future-you) that you first worked on feature A on files X and Y, then on feature B on files X and Z. Adding all
X, Y and Z to a single commit makes it harder to know what happened in that particuliar moment of the history, and
which feature development it was tackling.

The solution is to add hunks of your files to the commit. That is : you select the precise lines in your files that will
be added, while the others remain in the list of non-committed changes. The easiest way to do that is the following
command, for instance for file X :

git add -p X

The -p option stands for patch. Git will display in the console each hunk of your file that is a candidate to be added
to the commit. By typing y or n, you manually add lines of file X to the commit, so that you don’t mix up features A
and B in your commits ! That procedure is a part of interactive staging, which offers a lot of possibilites that we do
not cover here.

With this command, you’re starting to see that Git bash is not that friendly when it comes to interact a little bit more
than what you do for a simple commit. When you’re in the case where you modified a lot of files, and still want
to organise properly the commits by adding the right parts of the right files in each commit, do use a GUI to do the
interactive staging operation.

It is not only easier, it is also safer since you clearly see what you’re doing. From a terminal window, this is often not
exactly right. Below is a screenshot from GitKraken. Adding hunks of files is easy and transparent there, as it is with
most GUI.

16 Chapter 5. About me

https://git-scm.com/book/en/v2/Git-Tools-Interactive-Staging

Git and Gitflow tutorial, Release 0.0.3

Note that you do not control what Git sees as a hunk. It is in most cases quite effective at severing them at relevant
lines, but sometimes this forces you to stage into the same commit lines that you would have wanted to keep in different
commits. Well, that’s a good reason to commit even more often. You can also decide to select lines one by one, but
again I strongly advise to that with a GUI, for the sake of comfort and seing what you’re doing.

We’ll see later that you can squash numerous commits into few commits, so in that matter, when you’re developing a
new feature, or simply working hard and making a lot of changes, do commit very often. You’ll have time to tidy up
the commits when the rush is behind you, and you won’t regret to have a detailed history of all the changes you made,
and unmade, and made back. . .

5.2.2 Time travel : an introduction

To this point we’ve only used git to go forward : making changes to the code, then recording them, each commit
adding a new point into the repository’s timeline. Sometimes you commit something and it is only seconds before you
realise that you either forgot to add a file to it, or conversely you’ve just added a 1Go csv data file that has no reason
to be in your git history.

Here are some simple commands to fix this when it happened in the last commit. When it happened way before the
last commit, head over to the time travel section !

Amend a commit to add missed changes

In this scenario, you’ve just commited and you realise after checking with git status that you’ve forgotten to add
a certain file. No worries here : you can easily add supplementary changes to the last commit with the --amend
option. It also allows you to rewrite the commit message. If you do not provide a message with -m "my commit
message", it will use the previous value but will still ask you to validate the message with the default text editor.
The workflow to amend a commit is :

git add file1
git commit -m "Add file1 and file 2"
Ah ! forgot to add file2
git add file2
git commit --amend -m "Add file1 and file2"

Amending a commit is already rewriting history, so be careful with that. We’ll talk about that in more details below, but
for now just remember that you shouldn’t amend a commit that is already synchronised with the remote version
of the repository.

Remove a file that has just been committed

In the second case scenario, you need to remove the file not only from the commit, but also from the whole git history
(otherwise that annoying 1Go will stay there). In general, this is not an easy task, but we’re here in a special case : the
big file has appeared in the very last commit, which makes it not too dangerous to cancel that commit without losing
everything.

There are several strategies for that, here is the one that is to me the simplest (but probably not the safest) : reset your
repository to the commit preceding the falty one, while keeping the changes that you’ve made to the files. In other
words, you say to git go back to where I was just before I commited that last commit, so that you keep the files in the
state they currently are at, but the commit itself has disappeared from the history.

Technically, you have two options : reseting can be made with the option --soft or --mixed. The first will place
you at the moment right before you commited, that is, when changes were already staged for commit. The second
will place you at the moment where you made changes to the repository’s files but staged none of them yet. There is

5.2. Your first steps with Git (part I) 17

Git and Gitflow tutorial, Release 0.0.3

a third option --hard that speaks for itself : it cancels both the commit and the changes to the files. For the purpose
of demonstration, we will chose here a soft reset. Here is the whole sequence, including the initial falty commit :

git add .
git commit -m "Read client names from csv datafile"
Damn it, this has just added a large clientdata.csv file !

git reset --soft HEAD~1 # this will reset the history to the previous commit
git status # list the files that were added to the commit in first place

with --soft, they remain staged after reseting
git reset HEAD clientdata.csv # this is it
git commit -m "Read client names from csv datafile"

You’ll see that there are two reset instructions in the exemple. The first one, git reset --soft HEAD~1, applies
to the whole repository, while the second one git reset HEAD clientdata.csv applies to a single file. The
first one is the procedure described in the above paragraph. As it is for --amend, you shouldn’t reset after commits
that were already synchronised, since it will create diverging histories the moment you commit something new from
the reset timeline. We don’t like diverging histories at all : they mess up both contributing safely and the overall
readability of the repository.

The second reset statement allows you to withdraw the given file from the list of files that are to be commited, which
is exactly what we want. Remember that thanks to the first reset, git went back to the point where clientdata.csv was
a new file not appearing in the history.

The last statement is a simple commit, except that now clientdata.csv is not included (you can check that on your git
client) ! About this exemple, you would probably want to add the large file to the .gitignore, so that you won’t
risk adding it ever again. You can do that simply with the following command :

echo clientdata.csv >> .gitignore

Another usage of git reset HEAD file is when you want to add all files but a few to a commit. Instead of
manually adding the ones you want with git add ..., you can first add all of them with git add ., then
withdraw the few ones that you don’t want to commit with git reset HEAD unwanted_file.

Cancel changes to a file

Until now we were happy with the modifications we did to the files. The previous commands helped us with organising
the commits, but what happens if you’re unhappy with the changes you’ve made on a file, even before thinking about
a commit ? When there have been a lot of changes, reverting them with the famous CTRL+Z is not really a viable
option.

Git offers a simple command to cancel all modifications made to a file, which is done by putting it back to the state it
was at the last commit :

git checkout -- filetocancel

Note the difference between git reset HEAD file and git checkout -- file : the first one is used
when you did stage the file with git add file and want to withdraw it from the list of files to be committed, while
keeping the changes that you’ve made on that file. The second simply puts your file to the state it was at the last valid
commit, which is before you changed anything on it.

In other words, git reset HEAD file is not a destructive operation since it only affects the commit, not the
file itself. git checkout -- file do affect the file, so think twice before using it because it makes the changes
simply vanish (for real) !

18 Chapter 5. About me

Git and Gitflow tutorial, Release 0.0.3

Cancel a (past) commit

It will happen that after several commits, you realize that you did something wrong several commits ago. The problem
is, you want to cancel what you did in commit n-3 without removing what you did in commits from n-2 to n. You
could use a soft or mixed reset as seen above, but that’s likely to be complicated and unsafe.

Remember that a commit is a set of modifications to some files. So the right way to cancel those modifications is to
commit the reverse modifications. That is, if the modifications in the falty commit are add a new line after line 66 to
file A and add file B, the reverse modifications will be remove line 67 in file A and remove file B.

You have two ways of specifying which commit(s) to revert : either by giving the number of commits to look back
from the current one, or with the falty commit id:

git revert HEAD # revert the current (last) commit
git revert HEAD~1 # revert the previous commit
git revert HEAD~3..HEAD # revert the last three commits

git revert 4be26a # revert commit with id 4be26a, a git GUI is your friend

Note that reverting a commit do create a new commit with the reverse modifications and a default description “Revert
commit X”. This says that you cannot change the past by changing what was done in commit X, for it would mess up
all the subsequent commits. Let’s understand that a bit more.

Say that commit n-4 creates an empty file hello.txt, and commit n-3 adds a "goodbye" line to hello.txt.
Should reverting commit n-4 actually change it, commit n-3 would then indicate writing a line to a file that wouldn’t
exist anymore, which is nonsense for git.

Instead, thanks to commiting the reverse modification of commit n-4, git simply adds to the timeline a new modification
which is delete file “hello.txt”. This is much, much safer and robust. Below is a simple exemple of reverting the current
commit.

This shows quite well why it is important to atomize your commits while developing, which is keeping the number
of modifications appearing in a single commit low and coherent. The more you do that, the easier it will be to revert
while knowing exactly what you’re reverting and what you’re not.

Temporarily store your changes

It will happen that you’ve made changes, and for any reason need to quit working on what you were. You’re not
really ready to make a clean commit, meanwhile you’d like to save the changes, at least temporarily, so that you don’t
accidentally start over a new development while having forgotten that something had changed.

When you use branches and collaborate with others, it will happen : while you’re working on branch A, Joe asks for
your help on a bug on branch B. If you try to switch to branch B, git will probably refuse because you have unstaged
changes that would otherwise be lost.

Enters git stash. This command stores your changes so that you can do something elsewhere in the repository,
and allows you to get back to it later, as if you were never gone ! It actually is quite similar to a commit, except that it
does not record the changes in the timeline, but somewhere nearly invisible to you.

To yield your changes back, simply use git stash pop. Here is the workflow :

5.2. Your first steps with Git (part I) 19

Git and Gitflow tutorial, Release 0.0.3

doing stuff on files here, on branch A
Joe is now asking for help on branch B
git checkout B # going to branch B won't be allowed because of unstaged changes
git stash # that's fine, just stash your changes
git checkout B # now it's ok to switch to branch B
helping Joe here
git checkout A # go back to the branch you were working on
git stash pop # yield the changes you made before so you can work again

At this point you undestand what is a commit and how to commit changes to your files with precision, and even
forgiveness in case of small errors. Be sure to play with all the commands described here, since they are the ones that
you will use the most.

The more you control what’s in your commits and when to do them, the cleaner and easier to read your timeline will
be. Future-you and your partners will be grateful for that. Now let’s dive into the first step to work with others and
develop new features safely : mastering branches and merge statements.

5.3 Your first steps with Git (part II)

In the previous section, we rapidly mentionned working with branches, which is all this whole tutorial is about. Now
that you know how to manage commits, you will learn the upper-level usage of git : creating, managing and merging
branches.

5.3.1 From commits to branches

When you first initialize a git repository, in the terminal window you’ll see (master) appearing next to the folder
path your at. This indicates which git branch you’re checked out at, which is by default the master branch. We’ll
talk about branch names in a later section. For now let’s understand what is a branch and what they are here for.

A fantasy of a lifetime

To understand what is a branch, let’s work with some fantasy. Imagine that your life follows a timeline onto which
things that happen to you are stored (this is git). You can think of a branch as one possible path in that timeline. In the
real case, your life timeline is purely linear, which means you have only one path where everything is happening, and
it’s impossible to revert things that have been done (spoiler alert, this is not suitable for your code).

Branches in git work as if you’d have the superpower to test different paths for your life, or even making different lives
exist simultaneously. That could be : I have job A, and I would want to know what would be my life with job B. So I
create a job B branch, experiment with what my life is with job B, and then I can decide if I prefer to keep job A or to
move to job B. Pushing to the extreme, I decide that I want to live both so I’ll create sort of a duplicated life, where I
have job A in one timeline, and job B in the other, maintaining and living both of them simultaneously.

In the git world

This translates adequately to your code. Should it be a data science project or a web application (or any other you
fancy), you’re likely to have a working main version of your code. In the meantime, you want to improve or test new
features, without risking to break anything on the main version. This is especially true for a web application that other
people than you use or develop onto.

20 Chapter 5. About me

Git and Gitflow tutorial, Release 0.0.3

A branch roots from another branch (except the master branch which is the origin of your git tree), more precisely
from another branch’s commit. Most of the time you don’t have to think about which commit you’re creating the
branch from, since it is likely to be the current one. But know that it is also possible to create a branch starting at a
chosen commit, for instance when you know things went wrong after that commit, and you want to fix things without
modifying the main code nonetheless.

Tarzan, or creating and moving through branches

The git command to navigate through your code’s branches is git checkout. If you created a brand new repository
for this tutorial, you should now be on the master branch. On the exemple below, git is checked out at a develop
branch.

To create a new branch, use the following command:

git checkout -b my-new-branch

The -b option stands for branch and is used to indicate to git that the branch is to be created. That command actually
wraps the two following commands:

git branch my-new-branch # create my-new-branch but stay on develop
git checkout my-new-branch # move from develop to my-new-branch

On the screenshot below, I created the branch and git automatically moved to that branch, whose name is visible in the
parenthesis next to the current folder path.

To see the list of available branches, use:

git branch # display only local branches
git branch --all # display all branches, including remote ones

So now that you have at least two branches, say master and my-new-branch, you can choose either to commit
on master, or on my-new-branch. Working on my-new-branch allows you to work freely without affecting
master. Once you’re happy with what you did in my-new-branch and you want to add it to the main code, you
will proceed to a merge of my-new-branch onto master.

5.3. Your first steps with Git (part II) 21

Git and Gitflow tutorial, Release 0.0.3

On the screenshot, you see the very first commits of this repository. The purple branch is the main branch, always
called master. From the third commit, I created a new branch to work on a feature. On that feature branch, after
a first commit, I created a (blue) sub-branch, which was merged back on the first (light blue) feature branch. Once
completed, the (light blue) feature branch was then merged onto the master branch.

Note that you don’t necessarily have to merge a branch. You can use branches to make drafts that will never be merged
onto anything. In that case, the branch allows you to try and break code without risk.

5.3.2 Merging branches and first collaborations

Now that you know both how to commit and create branches, let’s dive into the merge flow. You merge a branch
onto another when you want to update the target branch with the work (i.e. the commits) that have been done on the
merging branch.

This opens up a whole world of organising the way you work with branches, that is how and when to merge branches.
We’ll call a branching model the set of names and rules you use to define how and when to merge branches in your
project. The simplest flow is : you don’t use branches at all and always work on master. A more reasonable flow is to
always create a branch to develop something, then merge it onto master when the new feature is ready and satisfactory.

The more complex your project, the more critical it is to use a reliable and well defined branching model. One of
them, which is the object of this tutorial, is the git flow branching model. We’ll talk about it in the next section. For
now, we’ll see the various ways of merging a branch onto another, and how to synchronise your local repository with
others’.

Three ways of merging a branch

Understanding how merges work is a critical part of a good usage of git and a fluid collaboration. It is that tricky
moment you put together the work done in various parts of your code, and as such is subject to a lot of difficulties. So
take a break before entering that realm, and more than never experiment with your own code to see how things work.

Git allows for three different types of merge. All of them do update the target branch using the merging branch, but
they produce a different timeline on the target branch once the merge is done. Choosing which merge behaviour to
use depends on various factors that we’ll present here, and using this or that behaviour can be a part of your project’s
branching model.

The generic instruction to merge a branch onto another is git merge. Say you have a feature/a-new-hope branch
ready to be merged onto develop. I personnaly never remember which is the order to use in the git command, so I
first checkout the receiving branch (in that exemple, develop), then merge. The flow is

git checkout develop # checkout the receiving branch
git merge feature/a-new-hope # merge the feature branch onto develop

Specify one of the option presented below to choose a specific merge behaviour.

Fast-forward merge

The default behaviour of git merge is a fast-forward merge when possible. A fast-forward is really just placing the
merging branch on top of the receiving one, to obtain a fully linear timeline, as if you had done the commits directly
to develop.

22 Chapter 5. About me

Git and Gitflow tutorial, Release 0.0.3

On the screenshot above, two branches are available from the tip of develop. We want to merge branch
feature/a-new-hope onto it, with a fast-forward. After merging (with the standard git merge feature/
a-new-hope which uses a fast-forward by default), we get the following timeline :

develop stays linear with the commits from feature/a-new-hope (which I deleted after merging) added. We
also see that the branch feature/section1-2 now departs from an older commit of develop than the tip of
it. This means that you won’t be able to use a fast-forward merge of that branch onto develop, since git cannot
add the commits from it onto the last ones in a straightforward way. If, in that configuration, you try git merge
feature/section1-2 --ff-only, git will abandon the merge because a fast-forward is impossible.

If you don’t provide the --ff-only option, git will use the merge commit strategy. Sometimes you really want to
use a fast-forward, so we’ll see later how to move the merging branch along the tree, so that it can (almost) always be
merged using a fast-forward.

Merge commit

The merge commit strategy is the one you’ll use the most when following the git flow. It consists in agregating on the
receiving branch all the modifications from the merging branch in a single commit, while keeping the full detail of the
commits succession on the merging branch. Here is what it looks like :

On the screenshot above, you see a feature branch comprised of three commits, that were merged onto the receiving
branch using a single commit that makes the junction between the two branches. There are two main advantages of
using merge commits :

• it keeps the timeline of the receiving branch clean and concise, since every new functionality is added through
a single commit, contrary to fast-forward merges where all the commits are added on top of the receiving

5.3. Your first steps with Git (part II) 23

Git and Gitflow tutorial, Release 0.0.3

branch. This allows precise tracking of modifications on the important branches, while keeping the detail of the
development history on the feature branch.

• the merge commit itself is a great place to provide detailed explanation about the new feature. Often your
working commits are not all self-explanatory, and navigating throughout the history may be harsh, so having a
merge commit that explains it all is of great help to other developers that need to know what modifications were
added by this merge.

The command for a merge with a merge commit is (from the receiving branch) the following. It actually stands for
no fast-forward, since, has said previsouly, git will by default perform a merge commit when a fast-forward is not
available:

git merge --no-ff

Git provides a default value for the merge commit message which is something like merge branch <merging branch>
onto <receiving branch>. You can keep that first line untouched while adding explanations below, or replace it with a
more self-explanatory message. We’ll see in the next section how to write good commit messages. Also know that the
merge commit is often the default behaviour of git hosts such as github, gitlab or bitbucket (we’ll see that in the pull
requests section), because it perfectly embodies the flow of developing something on a feature branch then adding it
all at once on the development or production branch.

Merge-and-squash

There’s a last option that I don’t recommend using in general : a squash merge. To me, it is kind of a bad compilation
of the two previous ones. The behaviour is the following : with a squash merge, all the modifications from the feature
branch are squashed into a single commit, which is added on top of the receiving branch. Here it how it looks like,
before and after.

Before, the feature branch feature/squashsquash departs from develop and is comprised of three commits.

I then squash-merged that branch onto develop with git merge feature/squashsquash --squash.
When performing a squash, you’re creating a new commit out of the branch’s ones, so you need to use git commit
with a message to validate the squash. Once done, the timeline looks as follow :

24 Chapter 5. About me

Git and Gitflow tutorial, Release 0.0.3

You see that a new commit was added directly onto develop, while the branch feature/squashsquash remains
living and not seemingly merged into develop.

Here is why I say it is a bad compilation of a merge-commit and a fast-forward :

• since the result is a commit directly on develop timeline, it will be really hard to distinguish between commits
that add a new feature to your code and commits that are usual commits (bug fixes, small commits, etc). When
the develop timeline will be long (and it will), you’ll have a hard time trying to find where (ie on which
commit) you added that buggy feature.

• since you combine all the branch’s commits into one, you’ll loose the detail of the branch development history,
which is quite useful for debugging. Note that once squashed, you’re supposed to delete the merging branch, so
you will definitely lose the branch details. Conversely, a merge commit, even if you delete the merging branch,
keeps the detail of the development history.

The single case in which I use squash merges : you want to fix something or add a really simple thing to develop.
You could do it with a normal commit, but you know that it is likely that the first trial won’t be good enough.

So instead of ending up with three commits because the first wasn’t working, with the last two being “Fix previous
commit” (), or repeatedly amending that first commit until it works (we’ll see later why one doesn’t want to amend
things on develop), you can create a branch, freely do your stuff there – even naming the commits with bad messages
– and when you know the modifications are ready to be merge, perform a squash merge, then delete the branch. This
is precisely what branches are for : allowing a trial and error development while keeping the important clean and tidy.

There’s a good thing about squashes though : they can agregate numerous commits into a single one. The idea of
keeping a relatively short development history is good, since it will help identifying milestones in your code, thus
making debugging a lot easier than having to look for a bug in a thousand commits.

There are other ways to squash your timeline than the squash merge. We’ll see that in the collaboration part of this
tutorial. For know, just remember that in most cases the merge commit strategy is the preferred one.

Synchronise with the rest of the world

For now we’ve only talked about managing our own version of the repository you’re working onto. You might remem-
ber though that I said to avoid as much as possible rewriting history for branches that are shared with others (mostly
develop and master). We’ll see know how sharing with others work.

5.3. Your first steps with Git (part II) 25

Git and Gitflow tutorial, Release 0.0.3

Remote and local version

In most cases, the repositories you’re working onto are hosted and synchronised somewhere on the web, on dedicated
websites such as github, gitlab (where this repository is hosted), or bitbucket. The version of the repository that is
hosted on the cloud and thus shared by everyone is called the remote version of the repository. You can find easliy the
remote url of any repository by typing

git remote get-url origin

Contrary to simple files hosting services such as the infamous Dropbox (never use it for hosting code. Never), git
does not automatically synchronise changes between your local version and what’s on the online version, for a simple
reason : it is not always straightforward to know how to merge various changes that have been made in several places.
On Dropbox, that would result in a conflicted copy of Danny’s version.

There’s another reason too : you don’t have to synchronise everything you do. As the remote version is the one that is
shared and accessible by everyone, you might want to keep it clean and sound, without adding all of the sketches that
you may have made locally. Let’s see what the instructions to synchronise your work and get other’s are.

Synchronising your changes : pushing

The first thing to know is how to publish your changes on the remote. That is, you’ve made a series of commits on
a given branch – locally – and you want those commits to be saved on the remote version (for backup reasons, or to
share it with others). On the below example, I have a branch feature/push-pull comprised of three commits.
As you can see, there’s only a computer icon next to the branch’s name : that is GitKraken’s way of indicating that it
is only a local branch. You can compare with the icons next to develop, where there’s the computer and the avatar
of the gitlab account where the remote is.

I want to synchronise this branch with the remote so that, for instance, my friend Danny can see what I’ve made. The
git term for that is push. It is rather intuitive : you’ve made some changes locally, and you push them onto the remote
version so that they appear here to, thus being available to anyone contributing to the repo. The command for that is

git push # push when being checked out at the branch you wish to push

If you try to push a branch that you’ve just created locally, git will refuse that push with the indication that it couldn’t
find a remote reference matching with the branch you’re trying to push, and will hint the following command

git push --set-upstream origin feature/push-pull

What happens here is that the branch does not exist yet on the remote version, and pushing can only work on a branch
that exists. So --set-upstream origin feature/push-pull indicates that the local branch feature/
push-pull must be pushed to a new branch on the remote called feature/push-pull too. You can mismatch
names between local branches and remote ones, but that’s only prone to confusion and not advised at all.

Update your local with the remote : pulling

The reverse operation is called (surprise) pulling. When you pull a branch from the remote, you’re telling git to apply
to your local branch the commits that were found on the repository and that you don’t have yet locally. Pulling modifies

26 Chapter 5. About me

https://github.com
https://about.gitlab.com
https://bitbucket.org/product/

Git and Gitflow tutorial, Release 0.0.3

your files locally according to the modifications listed in the commits you’re pulling from the remote. So you might
want to detect changes in the remote without pulling them, in case those changes mess up with what you have locally,
or just because you don’t want them. The command for that is

git fetch

This simply tells git to kind of ping the remote to know what the available changes are. It will detect not only new
commits on the current branch, but also new branches. This is of use when you want to get locally a new branch that
was created on the remote by someone else. You could create the branch locally then set its upstream to the remote
one, but that’s a rather heavy procedure for the task.

Instead, simply fetch first, then checkout to the branch as if it already existed locally. Since git has fetched the remote
branch, it knows that it exists on the remote, and just has to make a copy of it on your local version. That usually is
done in one single command

git fetch && git checkout a-new-remote-branch

Pulling is full of surprises and often doesn’t work as expected. Let’s see how it works in the simplest case, were
you did nothing locally but there were modifications pushed by others. On the below example, the computer icon
indicates where is my local version of feature/push-pull. As you can see, there are three commits available on
the remote that I don’t have on my local branch.

If you use git status while being checked out at feature/push-pull, git will indicate that your branch is
late and can be fast-forwarded, using the following command

git pull

And that’s it ! Your local version of feature/push-pull has just been updated with the commits that were
available on the remote branch feature/push-pull. The basic workflow is thus pretty simple : use git fetch
to know the changes available for pulling, then git pull to actually get those changes (you can also just pull,
because it fetches automatically before). Then, commit as you want, and use git push to update the shared version
of the repository with your changes.

You might have noted that pulling was made in the above example with a fast-forward, which is the same term that
is used for merging branches. That’s for a reason : pushing and pulling is actually nothing more than merging two
branches, the local and the remote. When you pull, you’re merging the remote branch onto your local branch, that is
applying on your local branch the commits that were made on the remote one. Conversely, when you push, you’re
merging your local branch onto the remote one.

Distribution and priorities

Since pushing and pulling is actually merging, the same problems that can occur with merges occur when synchro-
nising local and remote versions. In most cases pushing and pulling is done with a fast-forward, but it is not always
possible. Being unable to push and pull freely is one of the most annoying thing when you start using git.

5.3. Your first steps with Git (part II) 27

Git and Gitflow tutorial, Release 0.0.3

You made changes that you’re not allowed to push because someone else has also made changes and pushed them
before. What’s the point of using such a complex tool if it is not able to handle that kind of recurrent situation on its
own ? This is when the distributed part of DCVS that I mentioned in the introduction comes into play.

Git does not consider the remote version of the repository as primary. Even if it is often the origin for all the various
local repositories that you and your team work on (you can read more about that here), the commits there will not be
by default applied before yours.

Instead, any clone of the repository can contribute equally to all the other clones, including the remote, so that when
there are several possibilities of merging branches or adding new commits, it’s up to you to place git in a situation
where there will be a non-ambiguous way to merge things, or to tell it which way it should merge among all the
possibilities. The responsability is distributed among all clones of the repository, without any being central to
others. In the Collaborating with git section, we’ll dive into that subject to learn what to do when a fast-forward is
not available, and how to avoid being in that situation in the first place.

Up to this point you already know all that is needed to contribute to a repository when things are straight-forward
: you know how to commit changes, amend them if needed, create and navigate through branches, merge them and
push/pull the changes to the remote and shared version of the repository.

As you can guess, things can get tricky – and they will, and that’s why one defines branching models, which are a
set of rules and conventions that dictates how branches should be created and interacted with, to make the process of
merging and synchronising more fluid and safer for every one.

5.4 Gitflow branching model

5.5 Collaborating with git

5.5.1 Commit messages conventions

5.6 Basic Git commands

5.6.1 Commiting changes

git add file1 # add file1 to soon-to-come commit
git add file2 # add file2 also
git commit -m "Update file1 and file2"

git add file* # add all files starting with `file`

Add all changed files and commit, does not include new files
git commit -a -m "Your commit message"

git status # display the list of changed / added files

Add all files including new ones, then commit
git add . && git commit -m "Your commit message"

git commit -a # No -m option will open up a text editor

git add -p file1 # Add hunks of file1 in interactive mode

28 Chapter 5. About me

https://stackoverflow.com/questions/38837705/what-is-the-difference-between-origin-and-remote-in-git-commands

Git and Gitflow tutorial, Release 0.0.3

5.6.2 Time flexibility : reset, checkout, amend, revert and stash

reset the git history to the previous commit while
keeping the changes to files, and keeping them added
git reset --soft HEAD~1

same but changes are not added here
git reset --mixed HEAD~1

changes are all cancelled /!\ DANGER /!\
git reset --hard HEAD~1

git reset --soft HEAD~n # soft reset to the n-th commit backwards

withdraw file1 from the list of files included in the commit to come
git reset HEAD file1

cancel uncommited changes to file1
git checkout -- file1
git checkout -- . # cancel all uncommited changes

git commit --amend # rewrite the last commit

revert previous commit
git revert HEAD~1

revert last three commits
git revert HEAD~3..HEAD

revert specific commit
git revert 34abe9

git stash # stash your changes to store them temporarily
git stash pop # apply the stashed changes to start over from there

5.7 Branches basics

5.7.1 Create and navigate

create a new branch with name mybranch
git branch mybranch

move to (checkout) that branch
git checkout mybranch

create the branch then checkout
git checkout -b mybranch

list branches
git branch # local branches only
git branch --all # include remote branches

5.7. Branches basics 29

Git and Gitflow tutorial, Release 0.0.3

5.7.2 Merges

All the following merges are to be made while being checkout out at the receiving branch.

default merge instruction, fast-forward if possible, other wise
merge commit
git merge mybranch

fast forward only (will abandon if not possible)
git merge mybranch --ff-only

no fast-forward, which means a merge commit
git merge mybranch --no-ff

squash merge - not to use in general
git merge mybranch --squash

5.7.3 Synchronise

ping the remote to list all changes available
git fetch --all

pull the changes available (fast-forward if possible) for the current branch
git pull

push the local commits to the remote branch
git push

30 Chapter 5. About me

	What you will find here
	Contents
	Do code while reading
	Contributing
	About me
	A non-technical presentation of Git
	Your first steps with Git (part I)
	Your first steps with Git (part II)
	Gitflow branching model
	Collaborating with git
	Basic Git commands
	Branches basics

